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S imple LR and RC circuits are familiar to gen-
erations of physics students as examples of 
single-exponential growth and decay in the 

relevant voltages, currents, and charges. An element of 
novelty can be introduced by connecting two (instead 
of one) LR coils in parallel with a battery. The resulting 
circuit can still be treated using little more than the ba-
sic tools (Kirchhoff ’s rules plus a trial exponential so-
lution) employed in the standard LR analysis. But the 
solution is now a double exponential, as can be verified 
by constructing such a circuit.

Consider the circuit shown in Fig. 1, which is 
adapted from Ref. 1. The resistors include the internal 
resistances of the coils and battery.2 (This is the reason 
for the addition of the resistor R2, which was absent 
from the original circuit in Ref. 1.) Assume the cur-

rents in the circuit have reached their steady-state val-
ues with switch S open. The switch is then closed at 
t = 0. The problem is to find the subsequent currents 
in the circuit as a function of time.

General Solution for the Currents 
After the Switch Is Closed

The inductors prevent the currents from suddenly 
changing and thus they instantaneously remain at the 
steady-state values they had at the instant before S was 
closed,
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A long time after the switch is closed the currents 
attain new steady-state values, which can be derived 
using the parallel and series rules for resistors,
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Equations (1) and (2) are obtained by replacing the in-
ductors with ideal wires, since there is no voltage across 
an inductor in steady state. Provided R1 and R3 are 
nonzero, then I1(0) > I1 (�) and  I2(0) < I2 (�).

Now let us find the detailed functional forms of   
I1(t) and I2(t) from t = 0 to �. Kirchhoff ’s current 
junction rule is already built into Fig. 1, since the up-
ward current in the middle branch is the sum of the 
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Fig. 1. A circuit consisting of two inductors L1 and L2, 
one battery �, one switch S, and three resistors R1 
through R3. The dotted rectangular boxes represent the 
coils used in the experimental measurements.
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downward currents in the outer two branches. We 
therefore only need to write down two of the three 
Kirchhoff ’s voltage loop rules for the circuit. For loop 
defcba in Fig. 1, one gets
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Substitute t = 0 and Eq. (1) into Eq. (4) to find the 
initial condition
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Next solve Eq. (4) for I2 and substitute that result 
into Eq. (3) to obtain
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with I1() given by Eq. (2) and where

       (7)

A
L L

R R R R R R

B
L R R L R R

R R R R R R

=

and

1 2

1 2 1 3 2 3

1 2 3 2 1 3

1 2 1 3 2 3

+ +

=
+ + +
+ +

( ) ( )
..

  
This second-order linear differential equation must 
have two independent solutions. Substituting a trial 
solution of the form I1(t) – I1() = C exp(–kt), 
where C is a current amplitude and k is a rate con-
stant leads to

Ak 2 – Bk + 1 = 0.    (8)

This quadratic equation does indeed have two (real 
and positive3) decay rate constants:
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Therefore, the general solution of Eq. (6) is
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The values of the two current amplitudes are found 
by fitting to the initial conditions of Eqs. (1) and (5) 
to obtain
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  . 
Note that Cslow > –Cfast  > 0 (for any nonzero values 
of the circuit elements).

To find I2(t), the analysis starting at Eq. (4) can be 
repeated by instead considering loop febc. By sym-
metry, Eqs. (4) and (6)–(9) remain the same as before, 
provided one interchanges subscripts “1” and “2.” 
However the initial condition analogous to Eq. (5) is
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and Eq. (10) becomes

,  (10a)I t I C k t C k t2 2( ) ( ) exp( ) exp )(− ∞ = ′ − + ′ −fast fast slow slow
 

with the same rate constants as for I1. The current 
amplitudes C fast  and C slow can again be found by 
fitting to the initial conditions of Eqs. (1) and (5a), 
but this time both turn out to be negative.

The key result is that the two currents are double 
rather than single exponentials. This is an uncommon 
but interesting function.4 In the case of I1 the more 
rapidly decaying exponential has a small, negative am-
plitude while the slower exponential has a large, posi-
tive amplitude. This enables I1 to surprisingly start 
out with a positive value and zero slope,5 yet still man-
age to decrease monotonically with time, as graphed 
in blue in Fig. 2. In contrast, I2 starts out with a zero 
value and positive slope and increases monotonically 
with time, which is not particularly surprising and 
hence is not plotted.

For comparison, Fig. 2 also graphs I1(t) for the case 
of L1 = 0 in red. Then the current is a single exponen-
tial with a decay rate constant of 1/B, as one can see 
from Eq. (6) with A = 0.
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Special Case of Identical Coils

If L1 = L2  L and R1 = R2  R, then the form of 
the solution can be simplified. Equation (9) becomes
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where r  R3/R and τ  L/R. Equation (11) and the 
analogous equation for the current amplitudes of I2 
reduce to
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C C
i

r r

C C
i

r

fast fast

slow slow

and

= ′ =−
+ +

=− ′ =
+

( )( )

,

1 1 2

1
   

where i   /2R. Finally we can combine Eqs. (10) 
and (10a) to find
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The fast rate constant thereby describes the expo-
nential equilibration of the battery current I1 + I2. 
This is consistent with the fact that we can write this 
decay rate in terms of the equivalent circuit resis-
tance and inductance. Specifically the two inductors 
in parallel give Leq = L/2. Similarly the coil resistors 
are in parallel and that pair is in series with R3, so 
that Req = R/2 + R3. Now kfast = Req/Leq. On the 
other hand, the slow constant describes the equili-
bration of either coil alone, i.e., kslow = R/L.

Furthermore if R3 = 0 then r = 0, implying in turn6 

that kslow = kfast = 1/τ and Cslow = –Cfast = i. The cur-
rents through the coils would then reduce to the usual 
independent single-exponential solutions as each is 
connected in turn to the battery. (In fact, however, 
the first coil was assumed to have been connected 
long before t = 0, so only I2 is here found to be time 
dependent.) The role of R3 in the circuit is therefore 
to couple I1 and I2 together. This explains why R3 is 
not chosen to be small (compared to R1 and R2) in the 
following demonstration circuit.

Thinking of r  R3/R as the coupling strength be-
tween the two coils suggests that we can interpret  

I1 – I2 as the symmetric mode and I1 + I2 as the an-
tisymmetric mode (keeping in mind the opposite 
directions for positive flows of I1 and I2 in Fig. 1) in a 
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Fig. 2. Theoretical plots of I1(t) for the circuit of Fig. 1 using 
the component values specified in the caption of Fig. 3. The 
blue curve (with both inductors present) is a double expo-
nential with zero slope at the instant after switch S is closed, 
in striking contrast to the usual single-exponential decay 
(red curve) obtained when L1 (but not R1) is shorted out.

1.6

1.8

2

2.2

2.4

2.6

2.8

-10 0 10 20 30 40 50 60 70 80

time (ms)

vo
lt

ag
e 

b
et

w
ee

n
 a

 a
n

d
 d

 (V
)

with L 1

without  L1

Fig. 3. Measured voltage as a function of time (blue curve) 
for the circuit in Fig. 1 with L1

 = L2 = 4.0 H, R1 = R2 = 89 , R3 = 
200 , and  = 9.3 V. For the red curve labeled “without L1,” 
coil 1 was removed from the circuit and replaced by a vari-
able resistor adjusted to 89 . The smooth black curves are 
theoretical plots of Eq. (15) using these component values.
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normal-mode analysis. Just as is the case for two iden-
tical oscillators coupled together,7 the rate constant 
for the slow (low-frequency) mode I1 – I2 does not in-
volve the coupling but only the “natural” rate constant 
1/τ, while that for the fast (high-frequency) mode I1 
+ I2 is increased by twice the dimensionless coupling 
constant r.

Experimental Confirmation
These theoretical results were verified by actually 

constructing the circuit. Two 12-cm long, 8-cm inner 
diameter, 4000-turn solenoids were used and their 
bores were filled with stacks of iron rods to increase 
their inductance. (It then proved important to set up 
the circuit on a nonmetallic table to avoid stray flux 
linkages.) The inductances, L1 and L2, and internal 
resistances, R1 and R2, of these two coils were mea-
sured using a multimeter. The emf  was set at about 
9 V using a dc power supply, and a variable resistor 
box was utilized to adjust R3 to a convenient value 
for measurements. (The exact values of  under load 
and of R3 were also measured using a multimeter.) A 
telegraph switch was used for S and care was taken to 
avoid “bounces” during its closing.

It is less intrusive to measure the voltage across coil 
1 rather than the current through it by simply con-
necting an oscilloscope across it and pre-triggering 
off the switch closure. (This explains why point e is 
grounded in Fig. 1.) This voltage between points a 
and d is related to the current through the coil by  

V R I L
dI
dta-d = +1 1 1

1 .
                   

(15)
 

In general Va-d is double exponential, because I1 has 
that form. But unlike the current, the voltage has a 
nonzero initial slope L1d 2I1(0)/dt 2. However Va-d 
reduces to a single exponential (for nonzero circuit 
parameters in Fig. 1) if and only if L1/R1 = L2/R2. In 
particular for the case of identical coils, Eq. (15) be-
comes
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which has the expected limiting values for t = 0 and .

The experimental curves plotted in color in Fig. 3 
are in good agreement with this prediction (plotted 
in black) with no adjustable parameters. (The small 

discrepancies can be explained by a few percent error 
in the component values, well within their measure-
ment tolerances.) If L1 = 0, the last term in Eq. (15) 
is absent, which explains why the red curves in Figs. 2 
and 3 have the same shapes, in striking contrast to the 
blue curves when this inductor is present. Also, when 
L1 is in place, note that dI1/dt is zero both the instant 
after and long after switch S is closed, thus explaining 
why the red and blue curves in Fig. 3 share the same 
starting and ending voltages.

Comparison with Previous Work
Art Hovey,8 in analyzing the circuit in Fig. 1 when  

R2 = 0, assumed that the currents are described by 
single exponentials with time constant T,
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where the prefactors are chosen to agree with Eqs. 
(1) and (2). Equation (17) satisfies Eq. (3) provided 
that
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But Eq. (17) does not satisfy Eq. (4). The original 
goal of the problem in Ref. 1 was to find the total 
charge Q that flows through R1 between t = 0 and . 
Simply using Eqs. (17) and (18), one obtains
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However, kfast kslow in Eq. (9) even for3 R2 = 0. 
Thus the currents are actually double exponentials. 
Nevertheless when one integrates Eq. (10) with R2 
= 0, one gets the same solution (19) as did Hovey!9 
This is a good illustration of the fact that one can 
get the right final answer to a problem even when 
intermediate steps are wrong. Note in particular that 
Eq. (17) erroneously predicts that I1(t) has a negative 
slope at t = 0, in contrast to Eq. (5). It is not possible 
for a single exponential to satisfy Eq. (5).
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